Cubic Schrodinger Equation by Differential Transform Method
نویسندگان
چکیده
Four-dimensional differential transform method has been introduced and fundamental theorems have been defined for the first time. Moreover, as an application of four-dimensional differential transform, exact solutions of nonlinear system of partial differential equations have been investigated. The results of the present method are compared very well with analytical solution of the system. Differential transform method can easily be applied to linear or nonlinear problems and reduces the size of computational work. With this method, exact solutions may be obtained without any need of cumbersome work, and it is a useful tool for analytical and numerical solutions.
منابع مشابه
Numerical solution of Schrodinger equation using compact finite differences method and the cubic spline functions
In this paper, a high-order method for solving the Schrodinger equation is introduced. We apply a compact finite difference approximation for discretizing spatial derivatives and we use the C-cubic spline collocation method for the time integration of the resulting linear system of ordinary differential equations. The proposed method has fourth-order accuracy in both space and time variables. W...
متن کاملA New Technique of Reduce Differential Transform Method to Solve Local Fractional PDEs in Mathematical Physics
In this manuscript, we investigate solutions of the partial differential equations (PDEs) arising inmathematical physics with local fractional derivative operators (LFDOs). To get approximate solutionsof these equations, we utilize the reduce differential transform method (RDTM) which is basedupon the LFDOs. Illustrative examples are given to show the accuracy and reliable results. Theobtained ...
متن کاملOn the Numerical Solution of One Dimensional Schrodinger Equation with Boundary Conditions Involving Fractional Differential Operators
In this paper we study of collocation method with Radial Basis Function to solve one dimensional time dependent Schrodinger equation in an unbounded domain. To this end, we introduce artificial boundaries and reduce the original problem to an initial boundary value problem in a bounded domain with transparent boundary conditions that involves half order fractional derivative in t. Then in three...
متن کاملSome New Exact Travelling Wave Solutions of the Cubic Nonlinear Schrodinger Equation using the ( ) ) ( ( Exp ) - Expansion Method
The nonlinear physical model such as the cubic nonlinear Schrodinger equation has been applied in many branches of physics. In this paper, the )) ( exp( expansion method is applied to evaluate new exact travelling wave solutions of the complex Schrodinger equation with cubic nonlinearity. Various solutions of the cubic nonlinear Schrodinger equation using this method provide us the firm m...
متن کاملThe smoothed particle hydrodynamics method for solving generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system
A meshless numerical technique is proposed for solving the generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system with electromagnetic fields. The employed meshless technique is based on a generalized smoothed particle hydrodynamics (SPH) approach. The spatial direction has been discretized with the generalized SPH technique. Thus, we obtain a system of ordinary...
متن کامل